
TREES



Contents

• Definition

• Basic Terminology

• Binary Trees

• Representation using Array & Linked List



Definition

• Tree is a non-linear data structure which 
organizes data in a hierarchical structure and this 
is a recursive definition.

OR

• A tree is a connected graph without any circuits.

OR

• If in a graph, there is one and only one path 
between every pair of vertices, then graph is 
called as a tree.



• Example-



Properties

The important properties of tree data 
structure are:

• There is one and only one path between every 
pair of vertices in a tree.

• A tree with n vertices has exactly (n-1) edges.

• A graph is a tree if and only if it is minimally 
connected.

• Any connected graph with n vertices and (n-1) 
edges is a tree.



Basic Terminology

• The important terms related to tree data structure 
are-



1. Root-

• The first node from where the tree originates 
is called as a root node.

• In any tree, there must be only one root node.

• We can never have multiple root nodes in a 
tree data structure.



Example



2. Edge-

• The connecting link between any two nodes is 
called as an edge.

• In a tree with n number of nodes, there are 
exactly (n-1) number of edges.



Example



• 3. Parent-

• The node which has a branch from it to any 
other node is called as a parent node.

• In other words, the node which has one or 
more children is called as a parent node.

• In a tree, a parent node can have any number 
of child nodes.



Example



• Here, Node A is the parent of nodes B and C

• Node B is the parent of nodes D, E and F

• Node C is the parent of nodes G and H

• Node E is the parent of nodes I and J

• Node G is the parent of node K



• 4. Child-

• The node which is a descendant of some node 
is called as a child node.

• All the nodes except root node are child 
nodes.



Here,

• Nodes B and C are the children of node A

• Nodes D, E and F are the children of node B

• Nodes G and H are the children of node C

• Nodes I and J are the children of node E

• Node K is the child of node G



• 5. Siblings-

• Nodes which belong to the same parent are 
called as siblings.

• In other words, nodes with the same parent 
are sibling nodes.



Here,

• Nodes B and C are siblings

• Nodes D, E and F are siblings

• Nodes G and H are siblings

• Nodes I and J are siblings



• 6. Degree-

• Degree of a node is the total number of 
children of that node.

• Degree of a tree is the highest degree of a 
node among all the nodes in the tree.



• Here,
• Degree of node A = 2
• Degree of node B = 3
• Degree of node C = 2
• Degree of node D = 0
• Degree of node E = 2
• Degree of node F = 0
• Degree of node G = 1
• Degree of node H = 0
• Degree of node I = 0
• Degree of node J = 0
• Degree of node K = 0



• 7. Internal Node-

• The node which has at least one child is called 
as an internal node.

• Internal nodes are also called as non-terminal 
nodes.

• Every non-leaf node is an internal node.





• 8. Leaf Node-

• The node which does not have any child is 
called as a leaf node.

• Leaf nodes are also called as external 
nodes or terminal nodes.



• 9. Level-

• In a tree, each step from top to bottom is 
called as level of a tree.

• The level count starts with 0 and increments 
by 1 at each level or step.



• 10. Height-

• Total number of edges that lies on the longest 
path from any leaf node to a particular node is 
called as height of that node.

• Height of a tree is the height of root node.

• Height of all leaf nodes = 0





• Here,
• Height of node A = 3
• Height of node B = 2
• Height of node C = 2
• Height of node D = 0
• Height of node E = 1
• Height of node F = 0
• Height of node G = 1
• Height of node H = 0
• Height of node I = 0
• Height of node J = 0
• Height of node K = 0



• 11. Depth-

• Total number of edges from root node to a 
particular node is called as depth of that node.

• Depth of a tree is the total number of edges from 
root node to a leaf node in the longest path.

• Depth of the root node = 0

• The terms “level” and “depth” are used 
interchangeably.





• Here,
• Depth of node A = 0
• Depth of node B = 1
• Depth of node C = 1
• Depth of node D = 2
• Depth of node E = 2
• Depth of node F = 2
• Depth of node G = 2
• Depth of node H = 2
• Depth of node I = 3
• Depth of node J = 3
• Depth of node K = 3



• 12. Subtree-

• In a tree, each child from a node forms 
a subtree recursively.

• Every child node forms a subtree on its parent 
node.





13. Forest-



Binary Tree

• Binary tree is a special tree data structure in 
which each node can have at most 2 children.

• Thus, in a binary tree,

• Each node has either 0 child or 1 child or 2 
children.





Representation using Array & Linked 
List

• We start by numbering the nodes of the tree 
from 1 to n(number of nodes).



• As you can see, we have numbered from top 
to bottom and left to right for the same level. 
Now, these numbers represent the indices of 
an array (starting from 1) as shown in the 
picture given below.



Using Linked List

• Array representation is good for complete 
binary tree, but it is wasteful for many other 
binary trees. The representation suffers from 
insertion and deletion of node from themiddle
of the tree, as it requires the moment of 
potentially many nodes to reflect thechange in 
level number of this node. To overcome this 
difficulty we represent thebinary tree in linked 
representation.



• In linked representation each node in a binary 
has three fields, the left child field denoted as 
LeftChild, data field denoted as data and the 
right child field denoted asRightChild. If any 
sub-tree is empty then the corresponding 
pointer’s LeftChild andRightChild will store a 
NULL value. If the tree itself is empty the root 
pointer will store a NULL value. 



Binary Tree: Types



THANK YOU


